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Genotoxicity is defined as the property of being damaging to DNA, thereby being capable of causing mutations and potentially - . - s
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Classification thresholds were calibrated on the training set to
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Signatures Annotation

Differential signatures were annotated by enrichment analysis, whereby genesets representing pathways and transcription COnCI US|OnS FUtu e WO rkS
factor targets were tested for “over-representation” in a phenotype’s signatures.

From this multi-tissue study of gene expression signatures of  Inorder to improve and extend the methods and preliminary
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